Semi-Passive Dynamic Walking Approach for Bipedal Humanoid Robot Based on Dynamic Simulation

نویسندگان

  • Aiman Omer
  • Reza Ghorbani
  • Hun-ok Lim
  • Atsuo Takanishi
چکیده

The research on the principles of legged locomotion is an interdisciplinary endeavor. Such principles are coming together from research in biomechanics, neuroscience, control theory, mechanical design, and artificial intelligence. Such research can help us understand human and animal locomotion in implementing useful legged vehicles. There are three main reasons for exploring the legged locomotion. The first reason is to develop vehicles that can move on uneven and rough terrain. Vehicles with wheels can only move on prepared surfaces such as roads and rails; however, most surfaces are not paved. The second reason is to understand human and animal locomotion mechanics. The study of the mechanisms and principles of control found in nature can help us develop better legged vehicles. The third reason which motivated the study of legged locomotion is the need to build artificial legs for amputees. Although some effective artificial legs have been built to date, more indepth research is required to fully understand the mechanisms and movements necessary to substitute the actual limbs. The research in this paper concerns a group of legged robots known as bipedal walking robots. Research on this subject has a long history; however, it is only in the last two decades that successful experimental prototypes have been developed. The vast majority of humanoid and bipedal robots control the joint angle profiles to carry out the locomotion. Active walking robots (robots with actuators) can do the above task with reasonable speed and position accuracy at the cost of high control efforts, low efficiencies, and most of the time unnatural gaits. WABIAN-2R is among the most successful bipedal walking humanoid robots. In spite of the extensive research on humanoid robots, the actions of walking, running, jumping and manipulation are still difficult for robots. Passive-dynamic walking robots have been developed by researchers to mimic human walking. The main goal of building passive-dynamic walking robots is to study the role of natural dynamics in bipedal walking. Passive-dynamic walkers use gravitational energy to walk down a ramp without any actuators. They are energy efficient but have weak stability in the gait. In addition, the major cause of the energy loss in the current passive-dynamic

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking

In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...

متن کامل

An Approach to the Design of Walking Humanoid Robots with Different Leg Mechanisms or Flexible Feet and Using Dynamic Gaits

This article describes a method for designing humanoid robots and generating their dynamic gaits. Firstly, the global design process which defines structures able to carry out dynamic locomotion tasks is explained. Secondly, a set of leg and foot mechanisms are described to perform these tasks. A method of producing intrinsic smooth motions for fast walking gaits of bipedal robots with differen...

متن کامل

Development of a Bipedal Humanoid Robot: Control Method of Whole Body Cooperative Dynamic Biped Walking

The authors have focused on the bipedal humanoid robot expected to play an active role in human living space, through studies on an anthropomorphic biped walking robot. As the first stage of developing a bipedal humanoid robot, the authors developed the human-size 35 active DOF bipedal humanoid robot “WABIAN” and the human-size 41 active DOF bipedal humanoid robot “ WABIAN-R”. The authors also ...

متن کامل

The Evolution of Control and Adaptation in a 3D Powered Passive Dynamic Walker

Humans demonstrate speed, efficiency, and adaptability when traveling over rugged terrain. Bipedal robots modeled on biological designs could replace or assist people working in difficult environments. However, current research into humanoid robots has not produced practical machines. This paper explores the use of evolutionary robotics to evolve a simulation of a ten-degree of freedom bipedal ...

متن کامل

Analytical Dynamic Modelling of Heel-off and Toe-off Motions for a 2D Humanoid Robot

The main objective of this article is to optimize the walking pattern of a 2D humanoid robot with heel-off and toe-off motions in order to minimize the energy consumption and maximize the stability margin. To this end, at first, a gait planning method is introduced based on the ankle and hip joint position trajectories. Then, using these trajectories and the inverse kinematics, the position tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011